Serveur d'exploration sur les effecteurs de phytopathogènes

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Stress response, amino acid biosynthesis and pathogenesis genes expressed in Salmonella enterica colonizing tomato shoot and root surfaces.

Identifieur interne : 000045 ( Main/Exploration ); précédent : 000044; suivant : 000046

Stress response, amino acid biosynthesis and pathogenesis genes expressed in Salmonella enterica colonizing tomato shoot and root surfaces.

Auteurs : Sanghyun Han [États-Unis] ; Angela Marie C. Ferelli [États-Unis] ; Shih-Shun Lin [Taïwan] ; Shirley A. Micallef [États-Unis]

Source :

RBID : pubmed:33024855

Abstract

Salmonella enterica can colonize all parts of the tomato plant. Tomatoes have been frequently implicated in salmonellosis outbreaks. In agricultural settings, Salmonella must overcome stress, nutritional and competition barriers to become established on plant surfaces. Knowledge of the genetic mechanisms underlying Salmonella-plant associations is limited, especially when growing epiphytically. A genome-wide transcriptomic analysis of Salmonella Typhimurium (SeT) was conducted with RNA-Seq to elucidate strategies for epiphytic growth on live, intact tomato shoot and root surfaces. Six plasmid-encoded and 123 chromosomal genes were significantly (using Benjamini-Hochberg adjusted p-values) up-regulated; 54 and 110 detected in SeT on shoots and roots, respectively, with 35 common to both. Key signals included NsrR regulon genes needed to mitigate nitrosative stress, oxidative stress genes and host adaptation genes, including environmental stress, heat shock and acid-inducible genes. Several amino acid biosynthesis genes and genes indicative of sulphur metabolism and anaerobic respiration were up-regulated. Some Type III secretion system (T3SS) effector protein genes and their chaperones from pathogenicity island-2 were expressed mostly in SeT on roots. Gene expression in SeT was validated against SeT and also the tomato outbreak strain Salmonella Newport with a high correlation (R2 = 0.813 and 0.874, respectively; both p < 0.001). Oxidative and nitrosative stress response genes, T3SS2 genes and amino acid biosynthesis may be needed for Salmonella to successfully colonize tomato shoot and root surfaces.

DOI: 10.1016/j.heliyon.2020.e04952
PubMed: 33024855
PubMed Central: PMC7527575


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Stress response, amino acid biosynthesis and pathogenesis genes expressed in
<i>Salmonella enterica</i>
colonizing tomato shoot and root surfaces.</title>
<author>
<name sortKey="Han, Sanghyun" sort="Han, Sanghyun" uniqKey="Han S" first="Sanghyun" last="Han">Sanghyun Han</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
<settlement type="city">College Park (Maryland)</settlement>
</placeName>
<orgName type="university">Université du Maryland</orgName>
</affiliation>
</author>
<author>
<name sortKey="Ferelli, Angela Marie C" sort="Ferelli, Angela Marie C" uniqKey="Ferelli A" first="Angela Marie C" last="Ferelli">Angela Marie C. Ferelli</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
<settlement type="city">College Park (Maryland)</settlement>
</placeName>
<orgName type="university">Université du Maryland</orgName>
</affiliation>
</author>
<author>
<name sortKey="Lin, Shih Shun" sort="Lin, Shih Shun" uniqKey="Lin S" first="Shih-Shun" last="Lin">Shih-Shun Lin</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Biotechnology, National Taiwan University, Taipei, Taiwan.</nlm:affiliation>
<country xml:lang="fr">Taïwan</country>
<wicri:regionArea>Institute of Biotechnology, National Taiwan University, Taipei</wicri:regionArea>
<wicri:noRegion>Taipei</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Micallef, Shirley A" sort="Micallef, Shirley A" uniqKey="Micallef S" first="Shirley A" last="Micallef">Shirley A. Micallef</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
<settlement type="city">College Park (Maryland)</settlement>
</placeName>
<orgName type="university">Université du Maryland</orgName>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Centre for Food Safety and Security Systems, University of Maryland, College Park, Maryland, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Centre for Food Safety and Security Systems, University of Maryland, College Park, Maryland</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
<settlement type="city">College Park (Maryland)</settlement>
</placeName>
<orgName type="university">Université du Maryland</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:33024855</idno>
<idno type="pmid">33024855</idno>
<idno type="doi">10.1016/j.heliyon.2020.e04952</idno>
<idno type="pmc">PMC7527575</idno>
<idno type="wicri:Area/Main/Corpus">000074</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000074</idno>
<idno type="wicri:Area/Main/Curation">000074</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000074</idno>
<idno type="wicri:Area/Main/Exploration">000074</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Stress response, amino acid biosynthesis and pathogenesis genes expressed in
<i>Salmonella enterica</i>
colonizing tomato shoot and root surfaces.</title>
<author>
<name sortKey="Han, Sanghyun" sort="Han, Sanghyun" uniqKey="Han S" first="Sanghyun" last="Han">Sanghyun Han</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
<settlement type="city">College Park (Maryland)</settlement>
</placeName>
<orgName type="university">Université du Maryland</orgName>
</affiliation>
</author>
<author>
<name sortKey="Ferelli, Angela Marie C" sort="Ferelli, Angela Marie C" uniqKey="Ferelli A" first="Angela Marie C" last="Ferelli">Angela Marie C. Ferelli</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
<settlement type="city">College Park (Maryland)</settlement>
</placeName>
<orgName type="university">Université du Maryland</orgName>
</affiliation>
</author>
<author>
<name sortKey="Lin, Shih Shun" sort="Lin, Shih Shun" uniqKey="Lin S" first="Shih-Shun" last="Lin">Shih-Shun Lin</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Biotechnology, National Taiwan University, Taipei, Taiwan.</nlm:affiliation>
<country xml:lang="fr">Taïwan</country>
<wicri:regionArea>Institute of Biotechnology, National Taiwan University, Taipei</wicri:regionArea>
<wicri:noRegion>Taipei</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Micallef, Shirley A" sort="Micallef, Shirley A" uniqKey="Micallef S" first="Shirley A" last="Micallef">Shirley A. Micallef</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
<settlement type="city">College Park (Maryland)</settlement>
</placeName>
<orgName type="university">Université du Maryland</orgName>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Centre for Food Safety and Security Systems, University of Maryland, College Park, Maryland, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Centre for Food Safety and Security Systems, University of Maryland, College Park, Maryland</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
<settlement type="city">College Park (Maryland)</settlement>
</placeName>
<orgName type="university">Université du Maryland</orgName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Heliyon</title>
<idno type="ISSN">2405-8440</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<i>Salmonella enterica</i>
can colonize all parts of the tomato plant. Tomatoes have been frequently implicated in salmonellosis outbreaks. In agricultural settings,
<i>Salmonella</i>
must overcome stress, nutritional and competition barriers to become established on plant surfaces. Knowledge of the genetic mechanisms underlying
<i>Salmonella-</i>
plant associations is limited, especially when growing epiphytically. A genome-wide transcriptomic analysis of
<i>Salmonella</i>
Typhimurium (
<i>Se</i>
T) was conducted with RNA-Seq to elucidate strategies for epiphytic growth on live, intact tomato shoot and root surfaces. Six plasmid-encoded and 123 chromosomal genes were significantly (using Benjamini-Hochberg adjusted
<i>p-</i>
values) up-regulated; 54 and 110 detected in
<i>Se</i>
T on shoots and roots, respectively, with 35 common to both. Key signals included NsrR regulon genes needed to mitigate nitrosative stress, oxidative stress genes and host adaptation genes, including environmental stress, heat shock and acid-inducible genes. Several amino acid biosynthesis genes and genes indicative of sulphur metabolism and anaerobic respiration were up-regulated. Some Type III secretion system (T3SS) effector protein genes and their chaperones from pathogenicity island-2 were expressed mostly in
<i>Se</i>
T on roots. Gene expression in
<i>Se</i>
T was validated against
<i>Se</i>
T and also the tomato outbreak strain
<i>Salmonella</i>
Newport with a high correlation (
<i>R</i>
<sup>2</sup>
= 0.813 and 0.874, respectively; both
<i>p <</i>
0.001). Oxidative and nitrosative stress response genes, T3SS2 genes and amino acid biosynthesis may be needed for
<i>Salmonella</i>
to successfully colonize tomato shoot and root surfaces.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">33024855</PMID>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>09</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">2405-8440</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>6</Volume>
<Issue>9</Issue>
<PubDate>
<Year>2020</Year>
<Month>Sep</Month>
</PubDate>
</JournalIssue>
<Title>Heliyon</Title>
<ISOAbbreviation>Heliyon</ISOAbbreviation>
</Journal>
<ArticleTitle>Stress response, amino acid biosynthesis and pathogenesis genes expressed in
<i>Salmonella enterica</i>
colonizing tomato shoot and root surfaces.</ArticleTitle>
<Pagination>
<MedlinePgn>e04952</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.heliyon.2020.e04952</ELocationID>
<Abstract>
<AbstractText>
<i>Salmonella enterica</i>
can colonize all parts of the tomato plant. Tomatoes have been frequently implicated in salmonellosis outbreaks. In agricultural settings,
<i>Salmonella</i>
must overcome stress, nutritional and competition barriers to become established on plant surfaces. Knowledge of the genetic mechanisms underlying
<i>Salmonella-</i>
plant associations is limited, especially when growing epiphytically. A genome-wide transcriptomic analysis of
<i>Salmonella</i>
Typhimurium (
<i>Se</i>
T) was conducted with RNA-Seq to elucidate strategies for epiphytic growth on live, intact tomato shoot and root surfaces. Six plasmid-encoded and 123 chromosomal genes were significantly (using Benjamini-Hochberg adjusted
<i>p-</i>
values) up-regulated; 54 and 110 detected in
<i>Se</i>
T on shoots and roots, respectively, with 35 common to both. Key signals included NsrR regulon genes needed to mitigate nitrosative stress, oxidative stress genes and host adaptation genes, including environmental stress, heat shock and acid-inducible genes. Several amino acid biosynthesis genes and genes indicative of sulphur metabolism and anaerobic respiration were up-regulated. Some Type III secretion system (T3SS) effector protein genes and their chaperones from pathogenicity island-2 were expressed mostly in
<i>Se</i>
T on roots. Gene expression in
<i>Se</i>
T was validated against
<i>Se</i>
T and also the tomato outbreak strain
<i>Salmonella</i>
Newport with a high correlation (
<i>R</i>
<sup>2</sup>
= 0.813 and 0.874, respectively; both
<i>p <</i>
0.001). Oxidative and nitrosative stress response genes, T3SS2 genes and amino acid biosynthesis may be needed for
<i>Salmonella</i>
to successfully colonize tomato shoot and root surfaces.</AbstractText>
<CopyrightInformation>© 2020 The Author(s).</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Han</LastName>
<ForeName>Sanghyun</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ferelli</LastName>
<ForeName>Angela Marie C</ForeName>
<Initials>AMC</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lin</LastName>
<ForeName>Shih-Shun</ForeName>
<Initials>SS</Initials>
<AffiliationInfo>
<Affiliation>Institute of Biotechnology, National Taiwan University, Taipei, Taiwan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Micallef</LastName>
<ForeName>Shirley A</ForeName>
<Initials>SA</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Centre for Food Safety and Security Systems, University of Maryland, College Park, Maryland, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>09</Month>
<Day>29</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Heliyon</MedlineTA>
<NlmUniqueID>101672560</NlmUniqueID>
<ISSNLinking>2405-8440</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Agricultural science</Keyword>
<Keyword MajorTopicYN="N">Food safety</Keyword>
<Keyword MajorTopicYN="N">Human pathogens on plants</Keyword>
<Keyword MajorTopicYN="N">Microbiology</Keyword>
<Keyword MajorTopicYN="N">Nitrosative stress</Keyword>
<Keyword MajorTopicYN="N">NsrR regulon</Keyword>
<Keyword MajorTopicYN="N">Oxidative stress</Keyword>
<Keyword MajorTopicYN="N">Type III secretion systems</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>01</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>03</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>09</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>10</Month>
<Day>7</Day>
<Hour>5</Hour>
<Minute>51</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>10</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>10</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">33024855</ArticleId>
<ArticleId IdType="doi">10.1016/j.heliyon.2020.e04952</ArticleId>
<ArticleId IdType="pii">S2405-8440(20)31795-3</ArticleId>
<ArticleId IdType="pmc">PMC7527575</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Antimicrob Agents Chemother. 2011 Aug;55(8):3829-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21646491</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 2000 Nov;68(11):6139-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11035717</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Aug 5;280(31):28675-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15951572</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Food Microbiol. 2020 May;87:103359</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31948614</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2009 Dec 11;10:599</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20003355</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2013 Apr;103(4):326-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23301812</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011 Apr 26;6(4):e18855</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21541320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Sep 22;281(38):28039-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16873371</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2007 Sep;20(9):1083-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17849711</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2014 Oct 17;5:548</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25368608</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2018 May 08;9:695</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29867780</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2019 Mar 8;294(10):3783-3793</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30651351</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2016 May 02;82(10):3131-3142</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26994076</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2019 Nov 1;95(11):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31589309</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013;8(2):e57272</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23451197</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Epidemiol Infect. 2015 May;143(7):1352-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25167220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2011 Apr 20;2:84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21833325</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteins. 2009 Jan;74(1):18-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18561187</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2018 Feb 14;84(5):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29247060</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2005 Oct;71(10):5685-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16204476</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1993 Dec;175(24):7856-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7504664</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2011 Jun 14;2:129</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21716657</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Microbiol. 1999 Oct;7(10):410-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10498949</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2009;10(3):R25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19261174</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2017 Feb 15;83(5):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28039131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):9993-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8234347</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2014 Aug 1;30(15):2114-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24695404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>AoB Plants. 2013;5:pls052</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23372921</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2012 Mar 01;7(3):562-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22383036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MMWR Morb Mortal Wkly Rep. 2015 Feb 20;64(6):144-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25695319</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2010 Aug 31;5(8):e12406</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20824208</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2019 Jun;32(6):708-716</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30566029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Jan;128(1):13-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11788747</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2006 Sep 8;126(5):969-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16959575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2009 Nov;191(22):6843-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19767440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2008;3(6):1101-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18546601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Epidemiol Infect. 2008 Feb;136(2):157-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17475091</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2010 Jul;192(14):3824-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20472787</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2012 Sep;85(6):1179-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22831173</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2014 Apr;7(4):657-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24198231</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2007 Apr;189(8):3051-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17293424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2010 Aug;76(15):5013-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20562293</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Food Prot. 2014 Nov;77(11):1844-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25364916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2018 May 18;9:877</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29867794</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2020 Mar 13;11:391</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32231649</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Nov 2;101(44):15811-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15498873</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2011 Jan;77(2):498-504</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21075871</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 2003 Sep 26;226(2):363-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14553934</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2009 Oct;75(19):6110-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19666735</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2013 Apr;103(4):306-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23406434</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2013 Sep;15(9):2418-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23517029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Antimicrob Chemother. 2008 Dec;62(6):1273-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18819967</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2005 Mar;69(1):12-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15755952</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteins. 2013 Jun;81(6):1031-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23229889</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2018 Oct 16;9:2451</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30386314</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2007 Jan;63(1):283-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17229213</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol Rep. 2016 Oct;8(5):928-935</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27558204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Food Microbiol. 2012 Apr 16;155(3):247-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22341936</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2009 Aug;73(4):680-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19656291</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2015 Feb;81(3):861-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25416761</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2013 Jan;79(1):250-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23104408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2013 Jul;26(7):793-800</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23489058</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Biotechnol. 2014 Nov;7(6):630-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24512637</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Microbiol Immunol Infect. 2019 Apr;52(2):282-288</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30448437</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Taïwan</li>
<li>États-Unis</li>
</country>
<region>
<li>Maryland</li>
</region>
<settlement>
<li>College Park (Maryland)</li>
</settlement>
<orgName>
<li>Université du Maryland</li>
</orgName>
</list>
<tree>
<country name="États-Unis">
<region name="Maryland">
<name sortKey="Han, Sanghyun" sort="Han, Sanghyun" uniqKey="Han S" first="Sanghyun" last="Han">Sanghyun Han</name>
</region>
<name sortKey="Ferelli, Angela Marie C" sort="Ferelli, Angela Marie C" uniqKey="Ferelli A" first="Angela Marie C" last="Ferelli">Angela Marie C. Ferelli</name>
<name sortKey="Micallef, Shirley A" sort="Micallef, Shirley A" uniqKey="Micallef S" first="Shirley A" last="Micallef">Shirley A. Micallef</name>
<name sortKey="Micallef, Shirley A" sort="Micallef, Shirley A" uniqKey="Micallef S" first="Shirley A" last="Micallef">Shirley A. Micallef</name>
</country>
<country name="Taïwan">
<noRegion>
<name sortKey="Lin, Shih Shun" sort="Lin, Shih Shun" uniqKey="Lin S" first="Shih-Shun" last="Lin">Shih-Shun Lin</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PlantPathoEffV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000045 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000045 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PlantPathoEffV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:33024855
   |texte=   Stress response, amino acid biosynthesis and pathogenesis genes expressed in Salmonella enterica colonizing tomato shoot and root surfaces.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:33024855" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PlantPathoEffV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 16:00:34 2020. Site generation: Sat Nov 21 16:01:01 2020